β-Aminophosphonic compounds derived from methyl 1-dimethoxy-

 phosphoryl-2-succinimidocyclohex-3-ene-1-carboxylatesNathalie Defacqz, ${ }^{a}$ Roland Touillaux, ${ }^{b}$ Alex Cordi ${ }^{c}$ and Jacqueline Marchand-Brynaert *a
${ }^{a}$ Unité de Chimie Organique et Médicinale, Université catholique de Louvain, Département de Chimie, Bâtiment Lavoisier, place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium. E-mail: marchand@chim.ucl.ac.be
${ }^{b}$ Unité de Chimie Structurale et des Mécanismes Réactionnels,
Université catholique de Louvain, Département de Chimie, Bâtiment Lavoisier, place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
${ }^{\text {c }}$ Institut de Recherches Servier, 11, rue des Moulineaux, F-92150 Suresnes, France

Received (in Cambridge, UK) 8th June 2001, Accepted 16th August 2001
First published as an Advance Article on the web 24th September 2001

Compounds 3a,b, the $[4+2]$ cycloadducts of trimethyl 2-phosphonoacrylate and N-buta-1,3-dienylsuccinimide, have been transformed into various β-aminophosphonic acid derivatives $\mathbf{4 - 1 7}$ by selective deprotection, epoxidation, dihydroxylation, and oxidative cleavage of the cyclohexenyl C-C double bond.

Introduction

Aminophosphonic acid derivatives with the amino substituent in other than the α-position have attracted growing interest in medicinal chemistry due to their biological properties. ${ }^{1}$ The usual methods for the synthesis of aminophosphonic acid derivatives are the Arbuzov and Michaelis-Becker reactions, ${ }^{2}$ the electrophilic addition on phosphonate-stabilized α-carbanions, ${ }^{3}$ and the Michaël addition on vinyl phosphonates. ${ }^{4}$ Some years ago, we became interested in the development of new general synthetic routes towards aromatic ${ }^{5}$ and aliphatic ${ }^{6,7}$ $\beta-, \gamma-$, and δ-aminophosphonic acid derivatives, and substituted cyclohexenes (or cyclohexa-1,4-dienes) could be the precursors of both series, either by dehydrogenation, or by oxidative ring cleavage. As the Diels-Alder reaction is a well-established regio- and stereoselective method in the construction of sixmembered rings, we investigated the possibility of using aminodienes and phosphono-dienophiles as partners in [4 + 2] cycloadditions. ${ }^{8}$ In this paper, cycloadducts $\mathbf{3 a}$ and $\mathbf{3 b}$ have been considered as model compounds for the investigation of various transformations leading to new β-aminophosphonic acid derivatives.

Results and discussion

N-Buta-1,3-dienylsuccinimide $\mathbf{1}^{9}$ (stable under our experimental conditions), cycloadds to vinylphosphonate dienophiles, provided that they are activated by an electronwithdrawing substituent in the geminal ${ }^{7}$ or vicinal position. ${ }^{8}$ This is exemplified by the reaction with trimethyl 2-phosphonoacrylate $\mathbf{2}^{10}$ furnishing a 65 : 35 mixture of stereoisomers $\mathbf{3 a}$ and 3b in 93% yield (Scheme 1). A pure fraction of the major isomer 3a was isolated by crystallization from toluene; NMR data and X-ray diffraction analysis have previously established the cis axial/equatorial ("endo") orientation of the succinimido and phosphonate substituents, respectively. ${ }^{6}$ A pure fraction of the minor isomer $\mathbf{3 b}$, and mixtures of $\mathbf{3 a}$ and $\mathbf{3 b}$ with different ratios, were obtained by column chromatography on silica gel; the minor isomer 3b possesses the trans axial/axial ("exo") orientation of the succinimido and phosphonate substituents.

Hydrolysis of the succinimido group and the phosphoryl dimethyl group for compounds 3a,b occurred in refluxing

Scheme 1 Conditions: i, $\mathrm{CH}_{3} \mathrm{CN}$, hydroquinone (0.2 equiv.), $65^{\circ} \mathrm{C}$, 48 h ; ii, flash chromatography on silica gel.

Scheme 2 Reagents and conditions: i, 6 M HCl , reflux, 3 days; ii, BrSiMe_{3} (excess), CHCl_{3} or $\mathrm{CH}_{3} \mathrm{CN}, 20^{\circ} \mathrm{C}, 17 \mathrm{~h}$, then $\mathrm{H}_{2} \mathrm{O}$; iii, 1.6 M $\mathrm{LiOH}, 100^{\circ} \mathrm{C}, 48 \mathrm{~h}$, then H^{+}.
aqueous $\mathrm{HCl},{ }^{11}$ but the methyl carboxylate group remained unchanged. The β-aminophosphonic acids $4 \mathbf{a}$ (Scheme 2) and 4b (Scheme 3) were isolated in 84% yield and characterized by NMR. The coupling constant between $\mathrm{H}(2)$ and phosphorus

8b
Scheme 3 Reagents and conditions: i, BrSiMe_{3} (excess), $\mathrm{CH}_{3} \mathrm{CN}, 20^{\circ} \mathrm{C}$, 20 h ; ii, $1.6 \mathrm{M} \mathrm{LiOH}, 100^{\circ} \mathrm{C}, 12 \mathrm{~h}$ to 48 h ; iii, $\mathrm{NaBH}_{4}, i \mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}$ $20^{\circ} \mathrm{C}, 20 \mathrm{~h}$; iv, 6 M HCl , reflux, 3 days.
appears to be characteristic of the endo or exo configuration ${ }^{12}$ and values of 4.9 and 8.0 Hz correspond to dihedral angles $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{P}$ of about 60° and 50°, respectively. The stability of the carboxylic ester under strongly acidic conditions is surprising, ${ }^{8}$ and probably results from a steric protection by the geminal phosphoryl moiety.

Selective bis-demethylation of the phosphonate group was performed by treatment of $\mathbf{3}$ with a halogenotrialkylsilane. ${ }^{13,14}$ Thus, reaction of $\mathbf{3} \mathbf{a}$ with trimethylsilyl bromide in chloroform at room temperature furnished the phosphonic acid 5a (Scheme 2) and the coupling constant of 2.9 Hz between $\mathrm{H}(2)$ and phosphorus reveals a dihedral angle $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{P}$ of about $70^{\circ} .^{12}$ When the treatment with trimethylsilyl bromide was followed by saponification (hot aqueous $\mathrm{LiOH}, 48 \mathrm{~h}$), a mixture ($1: 1$) of the mono-phosphoryl and dicarboxylic acids $\mathbf{6 a}$ and $7 \mathbf{a}$ was recovered in 82% yield after filtration on ion-exchange resin (Scheme 2). The same sequence of reactions applied to the exo isomer 3b led exclusively to the phosphoryl-dicarboxylic acid 7b (Scheme 3) and in this case the carboxylic function cis to the imide moiety probably catalyzes the succinimide ring opening intramolecularly. In the stereoisomer $\mathbf{7 b}$, the coupling constant between $\mathrm{H}(2)$ and phosphorus was 8.3 Hz .

Preparation of phosphonic acid monoesters usually involves basic hydrolysis of phosphonate diesters. ${ }^{1,16}$ Reaction of 3b with hot aqueous LiOH gave the phosphonate monomethyl ester $\mathbf{8 b}$ in which the carboxylic ester was cleaved and the imide group partially hydrolyzed due to neighbouring group participation, similarly to $\mathbf{7 b}$ (Scheme 3). It should be mentioned that the carboxylate saponification is relatively facile if the phosphonate group is only partially deprotected ($\mathbf{8 b}$; short reaction time), while the conversion to di- and triacids ($\mathbf{6 a}, \mathbf{7 a}, 7 \mathbf{b}$, long reaction time) is sluggish. ${ }^{17}$ It should also be pointed out that we never observed decarboxylation of $\mathbf{6 a}, \mathbf{7 a}, 7 \mathbf{b}$, and $\mathbf{8 b}$, even when the reaction was carried out in strongly acidic, or in strongly basic media, at high temperature. Also Krapcho's conditions ${ }^{18}$ for decarboxylation of malonic esters, β-ketoesters, and α-sulfonylesters did not lead to demethoxycarbonylation of $\mathbf{3 a}, \mathbf{b}$: treatment with lithium chloride and water ($1: 1$) in refluxing DMSO^{19} led to a slow mono-demethylation of the dimethylphosphonate group and no demethylation of the carboxylate ester, or decarboxylation occurred.

All attempts to selectively deprotect the succinimide moiety using the methods classically recommended for the cleavage of a phthalimide group ${ }^{20-22}$ failed. Reaction of $\mathbf{3 a}, \mathbf{b}$ with hydrazine hydrate or methyl hydrazine in refluxing methanol led to monodealkylation of the phosphonate ester and to succinimide opening without liberation of the amine function (see $\mathbf{7 b}$ or
$\mathbf{8 b}$). In addition, reduction of $\mathbf{3 b}$ with sodium borohydride in aqueous propan-2-ol followed by acidification furnished 9b (Scheme 3), that is, the intramolecular nucleophilic attack of the hydroxy group onto the amide function to induce $\mathrm{C}(7)-\mathrm{N}$ bond cleavage did not occur. The coupling constant of 8.9 Hz between $\mathrm{H}(2)$ and phosphorus corresponds to a dihedral angle $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{P}$ of $45^{\circ} .{ }^{12}$ The isomer 3a gave the analogous reduction product.

We also examined the oxidation of the $\mathrm{C}-\mathrm{C}$ double bond of the cyclohexene substrate $\mathbf{3}$. The epoxides 10a (Scheme 4) and

Scheme 4 Reagents and conditions: i, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 17 \mathrm{~h}$; ii, $\mathrm{NMO}, \mathrm{OsO}_{4}$ (catal.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 3$ days and acidic work-up; iii, O_{3}, $\mathrm{MeOH},-78^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$; iv, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HCO}_{2} \mathrm{H},-78^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

13b

Scheme 5 Reagents and conditions: i, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 17 \mathrm{~h}$; ii, NMO, OsO_{4} (catal.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 2$ days; iii, $\mathrm{O}_{3}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$; iv, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HCO}_{2} \mathrm{H},-78^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
$\mathbf{1 0 b}$ (Scheme 5) were obtained, respectively, by treatment of 3a and $\mathbf{3 b}$ with m-chloroperbenzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. As expected, oxidation took place exclusively from the less hindered face. The trans orientation of the oxirane moiety and the succinimido substituent is evidenced in the ${ }^{1} \mathrm{H}$ NMR spectra by the absence of a coupling between $\mathrm{H}(2)$ and $\mathrm{H}(3)$. The exo isomer 10b showed a coupling constant of 14.9 Hz between $\mathrm{H}(2)$ and phosphorus typical of a dihedral angle of 30°, while the corresponding constant was zero in the endo isomer $10 \mathbf{a}\left(\mathrm{H}(2)-\mathrm{C}-\mathrm{C}-\mathrm{P}\right.$ dihedral angle of $\left.90^{\circ}\right) .{ }^{12}$ The structure of $\mathbf{1 0 b}$ was unambiguously confirmed by X-ray diffraction

$J_{2,3} \sim 11 \mathrm{~Hz}$ (expected) $J_{2,3} \sim 5 \mathrm{~Hz}$ (found)
Fig. 1 Preferred conformers of 11a and 12a.

Fig. 2 Preferred conformer of 14b.
analysis; the epoxide, succinimide and phosphonate groups are trans with respect to each other.
cis-Diols 11a and 12a (Scheme 4) were obtained by treatment of $\mathbf{3 a}$ with osmium tetraoxide and N -methylmorpholine oxide ${ }^{23}$ in 2-methylpropan-2-ol: the two isomers were formed in a 70 : 30 ratio and under our experimental conditions (acidic workup), the carboxylate function was hydrolyzed. Both stereoisomers exhibited a coupling constant of 5 Hz between $\mathrm{H}(2)$ and $\mathrm{H}(3)$; the major isomer 11a should correspond to the cishydroxylation occurring from the less hindered face. In this case, assuming chair conformations, the preferred conformer could be stabilized by hydrogen-bonding interactions between the carboxy group and $\mathrm{OH}(3)$ (Fig. 1). A similar oxidation of 3b led to the formation of a single stereoisomer 14b (Scheme 5) in which the carboxylate is not hydrolyzed (weakly acidic workup). The coupling constant of 11.3 Hz between $\mathrm{H}(2)$ and $\mathrm{H}(3)$ is typical of the trans-diaxial configuration corresponding to a preferred chair conformer with the bulky substituents in equatorial positions (Fig. 2).

Ozonolysis of 3a,b followed by treatment with hydrogen peroxide in formic acid ${ }^{24}$ gave the dicarboxylic acids 13a,b (Schemes 4 and 5) in which the phosphonate diester has been hydrolyzed. The endo and exo isomers are characterized by their $\mathrm{H}(2)-\mathrm{P}$ coupling constants of 9.1 and 7.0 Hz , respectively. Further treatment in refluxing 6 M HCl led to complete deprotection, furnishing 16a,b (Scheme 6). Here again, a significant

Scheme 6 Reagents and conditions: i, $6 \mathrm{M} \mathrm{HCl}, 100^{\circ} \mathrm{C}, 17 \mathrm{~h}$.
difference between the $\mathrm{H}(2)-\mathrm{P}$ coupling constant values of the endo ($\mathbf{1 6 a}, J_{2-\mathrm{P}}=8.5 \mathrm{~Hz}$) and exo ($\mathbf{1 6 b}, J_{2-\mathrm{P}}=3.1 \mathrm{~Hz}$) isomers was observed.

Finally, we transformed the epoxide 10b into the transdihydroxycyclohexane derivative 17b (Scheme 7) in two steps, i.e. nucleophilic opening of the oxirane with lithium hydroxide followed by acidic hydrolysis of the protected functions in 6 M HCl . Owing to the steric and electronic factors governing the $\mathrm{S}_{\mathrm{N}} 2$ substitution of the epoxide, ${ }^{25}$ the final product $\mathbf{1 7 b}$ exhibits a trans orientation between $\mathrm{H}(2)$ and $\mathrm{H}(3)$. From the coupling constant values of 2.2 Hz for J_{2-3}, and 9.1 Hz for $J_{2-\mathrm{P}}$, assuming chair conformations, we speculate that the conformer with the hydroxy functions in the di-axial positions should be preferred

Fig. 3 Postulated conformers of $\mathbf{1 7 b}$.

Scheme 7 Reagents and conditions: i, $\mathrm{LiOH}, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{H}_{2} \mathrm{O}, 10{ }^{\circ} \mathrm{C}$, 17 h ; ii, $6 \mathrm{M} \mathrm{HCl}, 20^{\circ} \mathrm{C}$.
due to favourable hydrogen bonding interactions between $\mathrm{OH}(4)$ and $\mathrm{NH}_{3}{ }^{+}(2)$, and $\mathrm{OH}(3)$ and $\mathrm{P}=\mathrm{O}(1)$ (Fig. 3). However, a twist-boat conformer (di-equatorial hydroxy groups) which minimises interaction of the polar groups could also account for the NMR data.

Throughout this study, the relative ease of hydrolysis of the geminal carboxylate and phosphonate groups appeared quite different, and not easily predictable, in the cyclohexene (4, 6, 7 , $\mathbf{8)}$ and cyclohexane derivatives ($\mathbf{1 1}, \mathbf{1 2}, \mathbf{1 7}$). Under acidic conditions, the methoxycarbonyl group was not cleaved in the cyclohexene series $(\mathbf{4 a}, \mathbf{b})$, but it was hydrolyzed in the more flexible cyclohexane series (11a, 12a); in this case, hydroxy neighbouring group participation should help. Under basic conditions, saponification of the ester group occurred in the cyclohexene ($\mathbf{6 a}, \mathbf{7 a}, \mathbf{b}, \mathbf{8 b}$) and cyclohexane series ($\mathbf{1 7 b}$). Under the same conditions, mono-demethylation of the phosphonate group was observed in both series (8b, 11a, 12a, 17b), while bis-demethylation required either acidic treatment (4a,b), or reaction with trimethylsilyl bromide (5a). All deprotections were more easily performed on the non-constrained aliphatic derivatives (13a,b, 16a,b).

Generally, the products from the chemical transformations of $\mathbf{3 a}, \mathbf{b}$ are highly polar, hygroscopic, and not easily purifiable. They were isolated by extraction and chromatography on ionexchange resins. ${ }^{26-28}$ The free phosphonic acid derivatives often associate as dimers, and this was visible in both IR and mass spectrometry using the APCI (atmospheric pressure chemical ionisation) mode. The structural assignments and relative configurations were made by NMR spectroscopy. ${ }^{12}$ For the cyclohexene/cyclohexane derivatives, the most typical feature was the ${ }^{1} \mathrm{H}$ NMR coupling constant between $\mathrm{H}(2)$ and phosphorus; the experimental values are within $0-5 \mathrm{~Hz}$ in the endo series and $8-14 \mathrm{~Hz}$ in the exo series (Table 1). The ${ }^{13} \mathrm{C}$ NMR coupling constants between carbon atoms and phosphorus were less characteristic of each series: the ${ }^{1} J,{ }^{2} J$, and ${ }^{3} J$ values ranged from 118 to $147 \mathrm{~Hz}, 0$ to 5 Hz and 7 to 13 Hz , respectively.
Compounds $\mathbf{4}$ to $\mathbf{1 7}$ have been evaluated as potential inhibitors of Protein Tyrosine Phosphatase 1B, ${ }^{29-31}$ an enzyme involved in the regulation of insulin action; ${ }^{32}$ no significant activities were found.

Experimental

General

Solvents were purified by conventional methods prior to use. Reagents were purchased from common commercial suppliers. Column chromatography was performed over silica gel Merck 60 (230-400 mesh), and over ion exchange resin Dowex 50 WX4-400. Mps were taken on an Electrothermal apparatus and are uncorrected. Elemental microanalyses were performed at Imperial College London. HRMS measurements were

Table 1 Coupling constants between $\mathrm{H}(2)$ and phosphorus

Cpd	${ }^{3} J_{\mathrm{H}_{(2)-\mathrm{P}} / \mathrm{Hz}}$	
	endo (a)	exo (b)
3	0	13.9
4	4.9	8.0
5	2.9	-
6	5.0	-
7	5.0	8.3
8	-	8.3
9	-	8.9
10	0	14.4
11	0	-
12	0	-
14	-	10.1
17	-	9.1

obtained at the University of Liège (Belgium). MS were recorded on a Finnigan MAT TSQ-70 apparatus (in positive or negative mode), in APCI mode (100 eV), or FAB mode (Xenon Ion Tech 8 KeV , matrix: glycerol or m-nitrobenzyl alcohol). NMR spectra were recorded on a Bruker 500 spectrometer operating at 500 MHz for proton and 125 MHz for carbon; chemical shifts (δ) are expressed in ppm relative to TMS or DSS (sodium 3-trimethylsilylpropane-1-sulfonate); coupling constants (J) are given in Hz (they were determined by selective decoupling experiments); coupling multiplicities are reported using conventional abbreviations. IR spectra were obtained with a Bio-Rad FTS-135 apparatus.

Methyl 1-dimethoxyphosphoryl-2-succinimidocyclohex-3-ene-1carboxylates 3a (endo) and 3b (exo)

A mixture of N-buta-1,3-dienylsuccinimide $2(300 \mathrm{mg}, 1.98$ $\mathrm{mmol})$, trimethyl 2-phosphonoacrylate $1(308 \mathrm{mg}, 1.58 \mathrm{mmol})$, and hydroquinone ($60 \mathrm{mg}, 0.54 \mathrm{mmol}$) in acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ was heated at $65^{\circ} \mathrm{C}$ for 48 h , under an argon atmosphere. Column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{iPrOH}, 50: 50\right)$ gave a $65: 35$ mixture of $\mathbf{3 a}$ and $\mathbf{3 b}(638 \mathrm{mg}, 93 \%)$; the major isomer crystallized from toluene (Found: C, 48.66; H, 5.80; N, 3.59. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{7} \mathrm{P}$ requires $\mathrm{C}, 48.69 ; \mathrm{H}, 5.83 ; \mathrm{N}, 4.05 \%$); mp $99-101{ }^{\circ} \mathrm{C}$; FAB-MS $m / z 346\left([\mathrm{M}]^{+}\right)(30 \%) ; v_{\max } / \mathrm{cm}^{-1} /($ film $)$ $3458,2959,1709,1600,1434,1389,1358,1250,1177,1030$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 3a $2.20(1 \mathrm{H}, \mathrm{m}, J 18.7,10.6,5.5,2.2,2.2$, and 2.2 , $\mathrm{H}-5), 2.30\left(1 \mathrm{H}, \mathrm{m}, J 18.7,6.6,4.9,2.2\right.$ and $\left.2, \mathrm{H}-5^{\prime}\right), 2.40(1 \mathrm{H}$, ddd, $J 13.4,5.5$ and $5.5, \mathrm{H}-6), 2.68(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-8), 2.75(1 \mathrm{H}, \mathrm{m}$, $J 13.4,10.6,6.6$ and 6.6, H-6'), 3.71 ($3 \mathrm{H}, \mathrm{d}, J 11, \mathrm{CH}_{3} \mathrm{OP}$), 3.79 $\left(3 \mathrm{H}, \mathrm{d}, J 11, \mathrm{CH}_{3} \mathrm{OP}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3} \mathrm{O}\right), 5.44(1 \mathrm{H}, \mathrm{m}, J 10.3$, 4.9, 5.1, 2.2 and $2.2, \mathrm{H}-3), 5.65(1 \mathrm{H}, \mathrm{m}, J 4.9,2.2$ and $2, \mathrm{H}-2)$, $6.00(1 \mathrm{H}, \mathrm{m}, J 10.3,4.9,2.2$ and $2.2, \mathrm{H}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3 \mathrm{bb} 2.25$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5+\mathrm{H}-6$), $2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}+\mathrm{H}-6^{\prime}\right), 2.65(4 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-8), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.76\left(3 \mathrm{H}, \mathrm{d}, J 11, \mathrm{CH}_{3} \mathrm{OP}\right), 3.80(3 \mathrm{H}$, d, $\left.J 11, \mathrm{CH}_{3} \mathrm{OP}\right), 5.32(1 \mathrm{H}, \mathrm{m}, J 13.9,5.1,2.6$ and $2.6, \mathrm{H}-2), 5.35$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 3 \mathrm{a} 21.2(\mathrm{~d}, J 12.5$, C-5), 21.6 (d, J 2.7, C-6), 27.5 (C-8), 45.4 (d, J5.5, C-2), 52.2 (d, J 133.2, C-1), $52.4\left(\mathrm{OCH}_{3}\right), 52.8\left(\mathrm{~d}, J 8.3, \mathrm{P}-\mathrm{OCH}_{3}\right)$, 53.7 (d, J 6.9, P-OCH3), 120.3 (d, J $8.3, \mathrm{C}-3$), 131.0 (C-4), 168.8 (d, $J 5.5, \mathrm{CO}_{2} \mathrm{Me}$), $176.5(\mathrm{C}-7) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 3 \mathrm{~b} 21.6$ (d, $J 6.9$, C-5), 24.1 (d, $J 5.5, \mathrm{C}-6), 27.5(\mathrm{C}-8), 46.2$ (s, $J \sim 0, \mathrm{C}-2$), 49.7 (d, $J 134.5, \mathrm{C}-1), 51.9\left(\mathrm{OCH}_{3}\right), 52.9\left(\mathrm{~d}, J 6.9, \mathrm{P}-\mathrm{OCH}_{3}\right)$, 53.7 (d, J6.9, P-OCH3), 121.5 (d, J 6.9, C-3), 129.8 (C-4), 168.6 (d, $J 2.8, \mathrm{CO}_{2} \mathrm{Me}$), 175.8 (C-7).

Methyl 1-phosphoryl-2-aminocyclohex-3-ene-1-carboxylates 4a (endo) and 4b (exo)

A $85: 15$ mixture of $\mathbf{3 b}$ and $\mathbf{3 a}(0.5 \mathrm{~g}, 1.45 \mathrm{mmol})$ was refluxed during 3 days in 6 M aqueous $\mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$. After concentration in vacuo, water $\left(2 \mathrm{~cm}^{3}\right)$ and diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$ were added. The solution was stored for 20 h at $0^{\circ} \mathrm{C} ; \mathbf{4 b}$ precipitated and $\mathbf{4 a}$ remained in solution. After filtration of $\mathbf{4 b}$, the aqueous phase
was extracted several times with diethyl ether to remove succinimide, then concentrated to afford $\mathbf{4 a}$. Compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ were isolated as hygroscopic hydrochlorides ($0.328 \mathrm{~g}, 84 \%$); FAB-MS $m / z 235.9\left(\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)\right]^{+}\right)(30 \%)$ and APCI $m / z 236$ $\left(\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)\right]^{+}\right)(28 \%) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3500-3000, 1704, 1651, 1457, 1437, 1295, 1248, 1045; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 4 \mathrm{a} 1.98-2.46(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5+\mathrm{H}-6), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,{ }^{3} J_{2-\mathrm{p}} 4.9\right)$, $5.64(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and $4.9, \mathrm{H}-3), 6.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ 4b $1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right)$, $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,{ }^{3} J_{2-\mathrm{P}} 8.0\right), 5.64(1 \mathrm{H}, \mathrm{dd}$, $J 10.1$ and $2.0, \mathrm{H}-3), 5.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 4 \mathrm{4a} 23.4(\mathrm{C}-6)$, 25.0 (d, J 10.8, C-5), 49.5 (C-2), 52.8 (d, $J 118.0, \mathrm{C}-1$), 55.8 $\left(\mathrm{OCH}_{3}\right), 124.4(\mathrm{C}-3), 137.7(\mathrm{C}-4), 175.8\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) \mathbf{4 b}$ 24.8 (d, J 10.8, C-5), 29.1 (C-6), 52.6 (d, J 118.0, C-1), 53.2 (C-2), $55.8\left(\mathrm{OCH}_{3}\right), 124.5(\mathrm{~d}, J 9, \mathrm{C}-3), 135.2(\mathrm{C}-4), 175.8$ ($\mathrm{CO}_{2} \mathrm{Me}$).

Methyl 1-phosphoryl-2-succinimidocyclohex-3-ene-1carboxylate 5a (endo)
A mixture of $3 \mathrm{a}(0.21 \mathrm{~g}, 0.61 \mathrm{mmol})$ and bromotrimethylsilane ($0.32 \mathrm{~cm}^{3}, 2.44 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(5 \mathrm{~cm}^{3}\right)$ was stirred at $20^{\circ} \mathrm{C}$ for 17 h , under an argon atmosphere. After addition of water $\left(0.3 \mathrm{~cm}^{3}\right)$, the mixture was concentrated in vacuo. The residue was passed through a Dowex resin with water as the eluent. Concentration gave 5 a as a colourless oil $(0.174 \mathrm{~g}, 90 \%)$ (HRMS-EI required for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{7} \mathrm{P}(M): 317.0664$. Found: M $=317.0661$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3400, 1781, 1457, 1439, 1323, 1295, 1200, 1091, 1053; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 57^{\circ} \mathrm{C}\right) 2.17(1 \mathrm{H}, \mathrm{m}, J 18.7$, $11.0,5.9,2.2,2.2$ and $2.2, \mathrm{H}-5), 2.26(1 \mathrm{H}, \mathrm{m}, J 18.7,6.6,0.1$, 4.4, 2.2 and $\left.2.0, \mathrm{H}-5^{\prime}\right), 2.35(1 \mathrm{H}, \mathrm{m}, J 13.4,5.9,5.9$ and 0.1 , $\mathrm{H}-6), 2.48\left(1 \mathrm{H}, \mathrm{m}, J 13.4,11.0,6.6\right.$ and $\left.6.6, \mathrm{H}-6^{\prime}\right), 2.72(4 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-8), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.47(1 \mathrm{H}, \mathrm{m}, J 10.3,4.9,4.0,2.2$ and 2.2, H-3), $5.55(1 \mathrm{H}, \mathrm{m}, J 4.9,2.9,2.2,2.2$ and $2.0, \mathrm{H}-2), 6.07$ $(1 \mathrm{H}, \mathrm{m}, J 10.3,4.4,2.2$ and $2.2, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 57^{\circ} \mathrm{C}\right) 24.4(\mathrm{~d}$, $J 12.7, \mathrm{C}-5), 25.3$ (d, J, 2.0, C-6), 30.9 (C-8), 49.5 (d, J 5.5, C-2), $55.5(\mathrm{~d}, J 129.0, \mathrm{C}-1), 56.5\left(\mathrm{OCH}_{3}\right), 123.4(\mathrm{~d}, J 8.1, \mathrm{C}-3), 135.3$ (C-4), 175.1 (d, J 5.5, CO2Me), 184.1 (C-7); APCI-MS m / z $634.9\left([2 \mathrm{M}+1]^{+}\right)(35 \%), 318.2\left([\mathrm{M}+1]^{+}\right)(100 \%)$.

1-Phosphoryl-2-succinimidocyclohex-3-ene-1-carboxylic acid 6a (endo)

A mixture of $3 \mathrm{a}(0.18 \mathrm{~g}, 0.54 \mathrm{mmol})$ and bromotrimethylsilane ($2.4 \mathrm{~cm}^{3}, 18.2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}\left(14 \mathrm{~cm}^{3}\right)$ was stirred at $20^{\circ} \mathrm{C}$ for 20 h , under an argon atmosphere. After concentration in vacuo, the crude 5a residue was treated with a saturated aqueous LiOH solution $\left(5 \mathrm{~cm}^{3}\right)$ at $100{ }^{\circ} \mathrm{C}$ for 48 h . The solution was passed through a Dowex resin to furnish a $1: 1$ mixture of $\mathbf{6 a}$ and $7 \mathbf{7 a}$ as a colourless oil $(0.134 \mathrm{~g}, 82 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 57^{\circ} \mathrm{C}\right) \mathbf{6 a} 2.04(1 \mathrm{H}, \mathrm{m}$, H-6), $2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$, $2.67(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 5.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.72(1 \mathrm{H}, \mathrm{m}, J 5.0,3.2,2.4$ and 2.4, H-3), $5.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 57^{\circ} \mathrm{C}\right) \mathbf{6 a} 23.5(\mathrm{C}-6)$, 24.3 (d, J 10.8, C-5), 31.4 (C-8), 48.3 (C-2), 52.6 (d, J 115.0, $\mathrm{C}-1), 127.2$ (d, $J 9.0, \mathrm{C}-3$), 133.2 (C-4), 176.0 (d, J $3.5 \mathrm{CO}_{2} \mathrm{H}$), $179.2(\mathrm{C}-7) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 57^{\circ} \mathrm{C}\right) 7 \mathrm{a} 2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.29(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5), 2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{6}^{\prime}\right), 2.57(2 \mathrm{H}, \mathrm{t}, \mathrm{H}-6), 2.67(2 \mathrm{H}, \mathrm{t}, \mathrm{H}-9)$, $4.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.87(1 \mathrm{H}, \mathrm{m}, J 10.3,5.0,3.2,2.4$ and 2.4 , $\mathrm{H}-3), 6.12(1 \mathrm{H}, \mathrm{m}, J 10.3,4.4$ and $2.4, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 57^{\circ} \mathrm{C}\right) 7 \mathrm{a}$ 23.7 (C-6), 24.8 (d, J 10.8, C-5), 31.9 (C-8), 33.3 (C-9), 49.6 (C-2), 54.1 (d, J 126.0, C-1), 124.2 (d, J 9.0, C-3), 137.5 (C-4), $176.3\left(\mathrm{~d}, J 3.5, \mathrm{CO}_{2} \mathrm{H}\right), 176.7(\mathrm{C}-7), 179.3\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

1-Phosphoryl-2-(3-carboxy-1-oxopropyl)aminocyclohex-3-ene-1carboxylic acid 7b (exo)
3b $(0.2 \mathrm{~g}, 0.58 \mathrm{mmol}$; containing 15% of 3a) was treated as above to furnish $7 \mathbf{b}$ as a yellow oil ($0.134 \mathrm{~g}, 75 \%$); APCI-MS $m / z 643\left([2 \mathrm{M}+1]^{+}\right)(13 \%), 322\left([\mathrm{M}+1]^{+}\right)(100 \%), 304([\mathrm{M}+1$ $\left.\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right)(35 \%) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}\right) 2.05(1 \mathrm{H}, \mathrm{m}, J 13.6,9.3,6.8$ and 6.8, H-6), $2.19(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.47(1 \mathrm{H}, \mathrm{m}, J 13.6,10.7,5.6$
and $\left.2.9, \mathrm{H}-6^{\prime}\right), 2.60(2 \mathrm{H}, \mathrm{t}, \mathrm{H}-8), 2.67(2 \mathrm{H}, \mathrm{t}, \mathrm{H}-9), 5.01(1 \mathrm{H}, \mathrm{m}$, $J 8.3,2.6,2.4,2.4$ and $2.4, \mathrm{H}-2), 5.47(1 \mathrm{H}, \mathrm{m}, J 10.3,3.6,2.4,2.4$ and $2.4, \mathrm{H}-3), 5.82(1 \mathrm{H}, \mathrm{m}, J 10.3,2.6,2.6$ and $2.6, \mathrm{H}-4)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 50{ }^{\circ} \mathrm{C}\right) 24.4$ (d, $\left.J 10.8, \mathrm{C}-5\right), 29.4$ (d, J 2.7, C-6), 31.9 (C-8), 33.2 (C-9), 50.7 (C-2), 53.8 (d, J 127.0, C-1), 129.8 (d, $J 8.9, \mathrm{C}-3), 131.3(\mathrm{C}-4), 176.5\left(\mathrm{~d}, J 2.0, \mathrm{CO}_{2} \mathrm{H}\right), 176.6(\mathrm{C}-7)$, $179.4\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

1-Methoxyphosphoryl-2-(3-carboxy-1-oxopropyl)aminocyclo-hex-3-ene-1-carboxylic acid 8b (exo)
A solution of $\mathbf{3 b}(0.138 \mathrm{~g}, 0.4 \mathrm{mmol}$, containing 15% of $\mathbf{3 a}$) in $\mathrm{CH}_{3} \mathrm{CN}\left(2 \mathrm{~cm}^{3}\right)$ was treated with saturated aqueous LiOH $\left(3 \mathrm{~cm}^{3}\right)$ at $100{ }^{\circ} \mathrm{C}$ for 12 h . After concentration and purification on Dowex resin, 8b was obtained as a yellow oil ($0.12 \mathrm{~g}, 96 \%$) (HRMS-EI required for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{7} \mathrm{P}(M): 317.0664$. Found: M $=317.0682$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3500-2500, 1712, 1695, 1647, $1534,1518,1473,1288,1241,1196,1038 ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 57^{\circ} \mathrm{C}\right) 2.05$ $(1 \mathrm{H}, \mathrm{m}, J 13.6,9.3,6.8$ and $6.8, \mathrm{H}-6), 2.17$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 2.46 ($1 \mathrm{H}, \mathrm{m}, J 13.6,10.7,5.6$ and $2.9, \mathrm{H}-6^{\prime}$), 2.60 ($2 \mathrm{H}, \mathrm{t}, \mathrm{H}-8$), 2.67 $(2 \mathrm{H}, \mathrm{t}, \mathrm{H}-9), 3.69\left(3 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{P}-\mathrm{OCH} H_{3}\right), 4.98(1 \mathrm{H}, \mathrm{m}, J 8.3$, 2.6, 2.6, 2.6 and $2.4, \mathrm{H}-2), 5.45(1 \mathrm{H}, \mathrm{m}, J 10.3,3.6,2.4,2.4$ and 2.4, H-3), $5.80(1 \mathrm{H}, \mathrm{m}, J 10.3,2.6,2.6$ and $2.6, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 57\right.$ ${ }^{\circ} \mathrm{C}$) 24.8 (d, $J 10.8, \mathrm{C}-5$), 29.9 (C-6), 32.3 (C-8), 33.7 (C-9), 51.2 (C-2), 54.3 (d, J 129.0, C-1), 56.0 (d, J 6.9, P-OCH ${ }_{3}$), 130.6 (d, J 9.0, C-3), $131.6(\mathrm{C}-4), 176.6\left(\mathrm{~d}, J 2.0, \mathrm{CO}_{2} \mathrm{H}\right), 176.8$ $(\mathrm{C}-7), 179.5\left(\mathrm{CO}_{2} \mathrm{H}\right) ;$ APCI-MS m/z $670.9([2 \mathrm{M}])^{+}(66 \%), 336$ $\left([M+1]^{+}\right)(100 \%), 318,292(35 \%)$.

Methyl 1-dimethoxyphosphoryl-2-(4'-hydroxybutyryl)amino-cyclohex-3-ene-1-carboxylate 9 b (exo)

A solution of $\mathbf{3 b}(0.306 \mathrm{~g}, 0.86 \mathrm{mmol}$, containing 15% of $\mathbf{3 a}$) in $i \mathrm{PrOH}\left(8 \mathrm{~cm}^{3}\right)$ and water $\left(1.3 \mathrm{~cm}^{3}\right)$ was treated with NaBH_{4} $(0.085 \mathrm{~g}, 2.15 \mathrm{mmol})$ and stirred at $20^{\circ} \mathrm{C}$ for 20 h . After filtration on Dowex resin and concentration in vacuo, $9 \mathbf{b}$ was recovered as a colourless oil ($0.243 \mathrm{~g}, 81 \%$) (HRMS-CI requires for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{P}(M H) 350.1392$. Found: $\left.M H=350.1381\right) ; v_{\text {max }} /$ $\mathrm{cm}^{-1} 3418,2960,1727,1645,1516,1453,1242,1182,1036$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 37^{\circ} \mathrm{C}\right) 1.82(2 \mathrm{H}, \mathrm{m}, J 7.0$ and $7.0, \mathrm{H}-9), 2.07(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5), 2.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.35(2 \mathrm{H}, \mathrm{t}, J 7.0$, $\mathrm{H}-8), 2.47$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}$), $3.60(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{H}-10), 3.80(3 \mathrm{H}, \mathrm{d}$, $\left.J 11.0, \mathrm{P}-\mathrm{OCH} H_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{P}-\mathrm{OCH}_{3}\right), 3.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.08(1 \mathrm{H}, \mathrm{m}, J 8.9, \mathrm{H}-2), 5.47(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.82$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 37^{\circ} \mathrm{C}\right) 24.3$ (d, J 10.8, C-5), 28.9 (d, $J 5.4, \mathrm{C}-6), 30.4$ (C-9), 35.2 (C-8), 49.9 (d, J 3.6, C-2), 54.4 (d, $J 137.0, \mathrm{C}-1), 56.1\left(\mathrm{OCH}_{3}\right), 57.2\left(\mathrm{~d}, J 7.2, \mathrm{P}-\mathrm{OCH}_{3}\right)$, $57.3\left(\mathrm{~d}, J 7.2, \mathrm{P}-\mathrm{OCH}_{3}\right), 63.5(\mathrm{C}-10), 129.2(\mathrm{~d}, J 9.0, \mathrm{C}-3)$, 131.6 (C-4), $173.9\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 177.9 (C-7); APCI-MS m/z 350.1 $\left([M+1]^{+}\right)(64 \%)$.

Methyl 1-dimethoxyphosphoryl-2-succinimido-3,4-trans-epoxy-cyclohexane-1-carboxylate 10a (endo) and 10b (exo)
A mixture of 3a (endo) ($0.2 \mathrm{~g}, 0.58 \mathrm{mmol}$) and m-chloroperbenzoic acid ($0.713 \mathrm{~g}, 2.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was stirred at $20{ }^{\circ} \mathrm{C}$ for 20 h . After washing with 10% aq. sodium sulfite ($10 \mathrm{~cm}^{3}$) and 10% aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-i \mathrm{PrOH}, 95: 5 ; R_{\mathrm{f}}=0.34\right)$ gave 10a as colourless crystals ($0.157 \mathrm{~g}, 75 \%$); mp $152-153{ }^{\circ} \mathrm{C}$ (Found: C, 47.16; H, 5.86; N, 3.38. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{8} \mathrm{P}$ requires C, 46.54; H, 5.57; N, 3.87\%); FAB-MS m/z 362 ([M + 1] ${ }^{+}$) (25%); $v_{\text {max }} / \mathrm{cm}^{-1} 3472,2957,1734,1708,1435,1390,1249,1185,1092$, 1056; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 200 \mathrm{MHz}\right) 2.07-2.32(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6+$ $\left.\mathrm{H}-6^{\prime}+\mathrm{H}-5\right), 2.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.75(4 \mathrm{H}, \mathrm{br}$ s, H-8 + H-9), $3.07(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and $3.0, \mathrm{H}-3), 3.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 3.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{P}-\mathrm{OCH}_{3}\right), 3.76(3 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{P}-$ $\left.\mathrm{OCH}_{3}\right), 5.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 50 \mathrm{MHz}\right) 18.5(\mathrm{~d}$, $J 12.4, \mathrm{C}-5), 18.8$ (C-6), 27.9 (C-8 + C-9), 49.5 (d, J132.6, C-1), 46.4 (d, $J 4.8, \mathrm{C}-2$), 52.1 (d, $J 9.9, \mathrm{C}-3$), 52.6 (C-4), 53.2 (d, $J 7.3$,
$\left.\mathrm{P}-\mathrm{OCH}_{3}\right), 54.4\left(\mathrm{~d}, J 7.0, \mathrm{P}-\mathrm{OCH}_{3}\right), 167.9\left(\mathrm{~d}, J 7.2, \mathrm{CO}_{2} \mathrm{Me}\right)$, 177.2 (C-7). 10b was similarly prepared from 3b (exo) treated with MCPBA (HRMS-FAB required for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{8} \mathrm{P}(M)$: 361.0927. Found: $M=361.0905)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 1.88-2.10$ (2H, m, H-6), 2.10-2.62 (2H, m, H-5), 2.63 (1H, ddd, J 18.2, 9.1 and 5.3, H-8), 2.69 (1 H , ddd, J 18.2, 10.1 and 4.4, H-8'), 2.76 (1 H , ddd, $J 18.2,9.1$ and 4.4, H-9), 2.87 (1 H , ddd, J 18.2, 10.1 and 5.3, $\left.\mathrm{H}-9^{\prime}\right), 3.14(1 \mathrm{H}, \mathrm{t}, J 4.0$ and $4.0, \mathrm{H}-3), 3.40(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.7, \mathrm{P}-\mathrm{OCH} \mathrm{O}_{3}\right), 3.76$ $\left(3 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{P}-\mathrm{OCH} H_{3}\right), 4.82(1 \mathrm{H}, \mathrm{d}, J 14.4, \mathrm{H}-2) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right) 20.4$ (d, $J 12.6, \mathrm{C}-5$), 21.5 (d, $J 5.4, \mathrm{C}-6$), 27.7 (C-8), 28.4 (C-9), 47.3 (d, J 140.0, C-1), 47.7 (d, J5.4, C-2), $52.7\left(\mathrm{OCH}_{3}\right)$, $52.9(\mathrm{C}-4), 53.4\left(\mathrm{~d}, J 7.2, \mathrm{P}-\mathrm{OCH}_{3}\right), 53.5(\mathrm{~d}, J 10.8, \mathrm{C}-3), 54.3$ (d, J 7.2, P-OCH ${ }_{3}$), $168.9\left(\mathrm{CO}_{2} \mathrm{Me}\right), 174.9(\mathrm{C}-7), 177.4(\mathrm{C}-10)$; X-ray diffraction (crystallisation from toluene): monoclinic crystal, $a=7.792$ (2), $b=14.727$ (4), $c=14.339$ (4) \AA; $a=90$, $\beta=96.51$ (2), $\gamma=90^{\circ} ; V=1634.8$ (8) $\AA^{3}, Z=4 ; d=1.468 \mathrm{~g} \mathrm{~cm}^{-3}$.

1-Dimethoxyphosphoryl-2-succinimido-3,4-cis-dihydroxycyclo-hexane-1-carboxylic acids 11a (endo) and 12a (endo)

A mixture of 4-methylmorpholine 4 -oxide monohydrate ($0.12 \mathrm{~g}, 0.86 \mathrm{mmol}$), osmium tetraoxide ($0.1 \mathrm{~cm}^{3}$ of 2.5% solution in $t-\mathrm{BuOH})$, and $\mathbf{3 a}(0.133 \mathrm{~g}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was stirred at $20^{\circ} \mathrm{C}$ for 3 days, under an argon atmosphere. After addition of $\mathrm{NaHSO}_{3}(20 \mathrm{mg})$, the mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$, then talcum powder (400 mg) and 3 drops of 6 M HCl were added, and the mixture was filtered after 15 min . The solid phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$. The organic phase was concentrated in vacuo and the oily residue was passed through a Dowex resin to furnish a $70: 30$ mixture of 11a and 12a as an hygroscopic brown oil ($0.072 \mathrm{~g}, 51 \%$); FAB-MS m / z 364 ($\left.[\mathrm{M}-1]^{-}\right)(32 \%) ; v_{\max } / \mathrm{cm}^{-1} 3500-3000,1738,1704,1651$, 1462, 1372, 1219, 1183, 1050; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$ major isomer 11a 2.02 (m, 1H, H-6), $2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5+\mathrm{H}-5^{\prime}\right), 2.67(\mathrm{~m}, 1 \mathrm{H}$, H-6'), 2.83 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), $3.83(3 \mathrm{H}, \mathrm{d}, J 11.0$, P-OCH $)_{3}$, $4.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.90(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4)$; minor isomer 12a $2.78(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, $4.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right.$) major isomer 11a $22.7(\mathrm{C}-6), 25.6(\mathrm{~d}, J 12.6, \mathrm{C}-$ 5), 30.5 (C-8), 30.7 (C-9), 51.8 (d, $J 165.0, \mathrm{C}-1$), 57.5 (d, $J 7.2$, $\left.\mathrm{P}-\mathrm{OCH}_{3}\right)$, $58.3(\mathrm{C}-2), 70.5(\mathrm{C}-3), 84.7(\mathrm{C}-4), 174.2\left(\mathrm{CO}_{2} \mathrm{H}\right)$, 184.1 (C-7); minor isomer 12a 23.11 (C-6), 25.6 (d, J 12.6, C-5), $57.2\left(\mathrm{~d}, J 7.2, \mathrm{P}-\mathrm{OCH}_{3}\right), 58.5(\mathrm{C}-2), 70.9(\mathrm{C}-3), 84.4(\mathrm{C}-4)$, $175.4\left(\mathrm{CO}_{2} \mathrm{H}\right), 184.4(\mathrm{C}-7)$.

Methyl 1-dimethoxyphosphoryl-2-succinimido-3,4-cis-dihydroxycyclohexane-1-carboxylate 14b (exo)

A mixture of 4-methylmorpholine 4 -oxide monohydrate ($0.25 \mathrm{~g}, 1.86 \mathrm{mmol}$), osmium tetraoxide ($0.1 \mathrm{~cm}^{3}$ of 2.5% solution in $t-\mathrm{BuOH})$, and $3 \mathrm{~b}(0.323 \mathrm{~g}, 0.933 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(1 \mathrm{~cm}^{3}\right)$ was stirred at $20^{\circ} \mathrm{C}$ for 2 days under an argon atmosphere. Work-up gave $\mathbf{1 4 b}$ as an hygroscopic green oil $(0.285 \mathrm{~g}$, 86%); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}\right) 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$, $2.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 2.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.77(2 \mathrm{H}, \mathrm{dd}, \mathrm{H}-8)$, $2.86(2 \mathrm{H}, \mathrm{dd}, \mathrm{H}-9), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75(3 \mathrm{H}, \mathrm{d}, J 11.0$, P- OCH_{3}), $3.81\left(3 \mathrm{H}, \mathrm{d}, J \mathrm{P}-\mathrm{OCH}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 4.62(1 \mathrm{H}$, ddd, $J 11.3,3.1$ and $0.9, \mathrm{H}-3), 4.80(1 \mathrm{H}$, dd, $J 11.3$ and 10.1 , $\mathrm{H}-2)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right) 26.4$ (d, J 5.4, C-6), 29.6 (d, J 12.6, C-5), 30.3 (C-8), 30.7 (C-9), 52.7 (d, J7.2, C-2), 54.7 (d, J 145.0, C-1), $56.0\left(\mathrm{OCH}_{3}\right), 56.6\left(\mathrm{~d}, J 7.2, \mathrm{P}-\mathrm{OCH}_{3}\right), 58.0\left(\mathrm{~d}, J 7.2, \mathrm{P}-\mathrm{OCH}_{3}\right)$, 68.7 (d, J 12.6, C-3), 71.6 (C-4), $173.6\left(\mathrm{CO}_{2} \mathrm{Me}\right), 183.5(\mathrm{C}-10)$, 184.0 (C-7).

2-Succinimido-3-methoxycarbonyl-3-phosphonohexane-1,6-dioic acids 13a (endo) and 13b (exo)
A $65: 35$ mixture of 3b (exo) and 3a (endo) $(0.27 \mathrm{~g}, 0.79 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ was saturated, at $-78^{\circ} \mathrm{C}$, with ozone. After 10 min , the solvent was evaporated at $20^{\circ} \mathrm{C}$ in vacuo. The
residue was treated at $-78^{\circ} \mathrm{C}$ with $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.5 \mathrm{~cm}^{3}, 20 \%\right.$ solution in water) and $\mathrm{HCO}_{2} \mathrm{H}\left(1 \mathrm{~cm}^{3}\right)$, then heated at $100{ }^{\circ} \mathrm{C}$ for 25 min . After concentration and washing with diethyl ether $(2 \times$ $20 \mathrm{~cm}^{3}$) the white precipitate was dried in vacuo. A $65: 35$ mixture of 13b and 13a was recovered ($0.3 \mathrm{~g}, 95 \%$); mp 77-78 ${ }^{\circ} \mathrm{C} ;$ FAB-MS m/z $380\left([\mathrm{M}-1]^{-}\right)(20 \%), 348(28 \%), 304$ (32%); $v_{\text {max }} / \mathrm{cm}^{-1} 3426$ (br), 1718, 1393, 1257, 1182, 1060 ; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 67^{\circ} \mathrm{C}\right)$ 13a (endo) $2.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.44(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-4^{\prime}\right), 2.77(1 \mathrm{H}, \mathrm{ddd}, J 17.1,11.3$ and $5.8, \mathrm{H}-5), 3.01(4 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-8), 3.03$ (1 H, ddd, J 17.1, 11.3 and $5.8, \mathrm{H}-5$) $), 3.92(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.80(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-2)$; 13b (exo) 2.4-2.7 (4H, m, $\mathrm{H}-4+\mathrm{H}-5), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.30(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{H}-2)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 67^{\circ} \mathrm{C}\right) 13 \mathrm{a}$ (endo) $28.5(\mathrm{C}-4), 31.2(\mathrm{C}-8), 33.4(\mathrm{C}-5)$, $56.3\left(\mathrm{OCH}_{3}\right), 57.3(\mathrm{~d}, J 118.0, \mathrm{C}-3), 57.9(\mathrm{C}-2), 172.9(\mathrm{~d}$, $J 11.5, \mathrm{CO}_{2} \mathrm{Me}$), 174.9 (d, J 6.0, C-1), 180.7 (C-6), 183.2 (C-7); 13b (exo) 29.6 (C-4), 30.6 (C-8), 32.8 (C-5), $55.7\left(\mathrm{OCH}_{3}\right)$, 56.6 (d, J 133.0, C-3), 58.1 (C-2), 172.5 (d, J 7.7, CO2Me), 174.8 (d, J 2.8, C-1), 179.9 (C-6), 182.6 (C-7).

2-Amino-3-carboxy-3-phosphonohexane-1,6-dioic acids 16a (endo) and 16b (exo)

A 35: 65 mixture of $\mathbf{1 3 a}$ and $\mathbf{1 3 b}(0.1 \mathrm{~g}, 0.26 \mathrm{mmol})$ was heated in 6 M aqueous $\mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ for 17 h at $100^{\circ} \mathrm{C}$. After concentration in vacuo, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ and extracted several times with diethyl ether to remove succinic anhydride. Concentration of the aqueous phase gave a $35: 65$ mixture of 16a and 16b (hydrochlorides) as an hygroscopic beige powder ($0.077 \mathrm{~g}, 92 \%$); mp $61-62{ }^{\circ} \mathrm{C}$; FAB-MS $m / z 287$ $\left([\mathrm{M}-\mathrm{Cl}+1]^{+}\right)(15 \%) ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3420(\mathrm{br}), 1733,1684$, 1653, 1247, 1060; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right.$) 16a 2.26-2.66 (4H, m, H-4 + H-5), $4.74(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-2)$; 16b $2.26-2.66(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4+$ $\mathrm{H}-5), 4.81(1 \mathrm{H}, \mathrm{d}, J 3.1, \mathrm{H}-2)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$ 16a $25.5(\mathrm{C}-4)$, 29.8 (C-5), 52.3 (d, J 125.0, C-3), 59.6 (C-2), 175.4 (d, J 19.7, $\mathrm{CO}_{2} \mathrm{H}$), 175.7 (C-6), 178.0 (C-1); 16b 23.4 (C-4), 29.8 (C-5), 53.4 (d, J125.0, C-3), 59.7 (C-2), 175.6 (C-6), 178.0 (C-1), 180.0 (d, J 19.7, $\mathrm{CO}_{2} \mathrm{H}$).

1-Methoxyphosphoryl-2-amino-3,4-trans-dihydroxycyclohexane-1-carboxylic acid 17b

A solution of $\mathbf{1 0 b}(93 \mathrm{mg}, 0.25 \mathrm{mmol}$, containing 15% of $\mathbf{1 0 a}$) in $\mathrm{CH}_{3} \mathrm{CN}\left(5 \mathrm{~cm}^{3}\right)$ was heated with saturated aqueous LiOH $\left(5 \mathrm{~cm}^{3}\right)$ at $100^{\circ} \mathrm{C}$ for 17 h . The solution was made acidic with 6 M HCl , concentrated in vacuo and passed through a Dowex resin. The recovered aqueous phase was extracted several times with ether, then concentrated to furnish $\mathbf{1 7 b}$ (hydrochloride) as a yellow oil ($0.073 \mathrm{~g}, 66 \%$); APCI-MS $\mathrm{m} / \mathrm{z} 268$ ($[\mathrm{M}-\mathrm{Cl}-1]^{-}$) (80%), $224(18 \%) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right) 1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.05(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 3.86(1 \mathrm{H}, \mathrm{m}$, $J 9.1$ and $2.2, \mathrm{H}-2), 3.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right) 24.9(\mathrm{~d}, J 5.4, \mathrm{C}-6), 25.3(\mathrm{~d}, J 10.8, \mathrm{C}-5), 50.4$ (d, $J 118.0, \mathrm{C}-1), 53.3(\mathrm{C}-2), 56.1\left(\mathrm{~d}, J 7.2, \mathrm{P}-\mathrm{OCH}_{3}\right), 71.1(\mathrm{C}-4)$, 71.7 (d, J 10.8, C-3), $176.5\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

Acknowledgements

This work was generously supported by FNRS (Belgium) and the Institut de Recherches SERVIER (France).

References

1 Aminophosphonic and Aminophosphinic Acids, Chemistry and Biological Activity, ed. V. P. Kukhar and H. R. Hudson, John Wiley \& Sons, New York, 2000
2 K. Issleib, A. Balszuweit, H.-J. Richter and W. Tonk, Z. Chem., 1983, 23, 434.
3 T. Yokomatsu, T. Murano, K. Suemune and S. Shibuya, Tetrahedron, 1997, 53, 815
4 D. Enders, H. Wahl and K. Papadopoulos, Liebigs Ann., 1995, 1177.
5 N. Defacqz, B. de Bueger, R. Touillaux, A. Cordi and J. MarchandBrynaert, Synthesis, 1999, 1368.
6 N. Defacqz, R. Touillaux, B. Tinant, J.-P. Declercq, D. Peeters and J. Marchand-Brynaert, J. Chem. Soc., Perkin Trans. 2, 1997, 1965.

7 N. Defacqz, R. Touillaux and J. Marchand-Brynaert, J. Chem. Res. (S), 1998, 512; N. Defacqz, R. Touillaux and J. MarchandBrynaert, J. Chem. Res. (M), 1998, 2273.
8 J. Marchand-Brynaert, N. Defacqz and R. Robiette, Recent Res. Dev. Org. Chem., , in the press.
9 C. A. Zezza and M. B. Smith, J. Org. Chem., 1988, 53, 1161.
10 M. F. Semmelhack, J. C. Tomesch, M. Czarny and S. Boettger, J. Org. Chem., 1978, 43, 1259.

11 M. S. Dappen, R. Pellicciari, B. Natalini, J. B. Monahan, C. Chiorri and A. A. Cordi, J. Med. Chem., 1991, 34, 161.
12 Phosphorus-31 NMR, Principles and Applications, D. G. Gorenstein, Academic Press, Inc., London, 1984.
13 C. E. McKenna, M. T. Higa, N. H. Cheung and M.-C. McKenna, Tetrahedron Lett., 1977, 155.
14 G. M. Blackburn and D. Ingleson, J. Chem. Soc., Chem. Commun., 1978, 870.
15 N. Galiotti, J. Coste, P. Bedos and P. Jouin, Tetrahedron Lett., 1996, 37, 3997.
16 A. Holy, Synthesis, 1998, 381.
17 D. V. Patel, R. J. Schmidt, S. A. Biller, E. M. Gordon, S. S. Robinson and V. Manne, J. Med. Chem., 1995, 38, 2906.
18 P. Krapcho, Synthesis, 1982, 806; P. Krapcho, Synthesis, 1982, 893.
19 R. Bodalski and E. Rutkowska-Olma, Tetrahedron, 1980, 36, 2353.
20 Protective Groups in Organic Synthesis, ed. J. W. Greene, John Wiley \& Sons, New York, 1981.
21 T. Kamiya, M. Hashimoto, O. Nakaguchi and T. Oku, Tetrahedron, 1979, 35, 323.
22 T. Sasaki, K. Minamoto and H. Itoh, J. Org. Chem., 1978, 43, 2320.
23 V. Van Rheenen, R. C. Kelly and D. Y. Cha, Tetrahedron Lett., 1976, 23, 1973.
24 A. L. Henne and P. Hill, J. Am. Chem. Soc., 1943, 65, 752.
25 R. E. Parker and N. S. Isaacs, Chem. Rev., 1959, 79, 737.
26 A. A. Cordi and M. L. Vasquez, 1988, EP 0313002 A2.
27 A. A. Cordi and M. L. Vasquez, 1993, US 005, 177, 240A.
28 A. A. Cordi and E. T. Sun, 1993, US 005, 252, 563A.
29 Z. Jia, D. Bardford, A. J. Flint and N. K. Tonks, Science, 1995, 268, 1754.

30 D. Barford, Curr. Opin. Struct. Biol., 1995, 5, 728.
31 J. B. Aggen, A. C. Nairn and R. Chamberlin, Chem. Biol., 2000, 7, R13.
32 B. J. Goldstein, P.-M. Li, W. Ding, F. Ahmad and W.-R. Zhang, Vitam. Horm. (San Diego), 1998, 54, 67.

